Question number	Mark scheme	Marks
1. (a) (b)	A random variable; that is, a function involving no unknown quantities If all possible samples are taken; then their values will form a probability distribution called the sampling distribution	$\begin{array}{\|rr} \hline \text { B1; B1 } & (2) \\ \text { B1; B1 } & (2) \\ \text { (4 marks) } \end{array}$
2. (a) (b)	$\begin{aligned} & \lambda \text { is large or } \lambda>10 \\ & Y \sim \mathrm{~N}(30,30) \\ & \begin{aligned} & \mathrm{P}(Y>28)=1-\mathrm{P}(Y \leq 28.5) \\ & \quad 1-\mathrm{P}\left(Z \leq \frac{28.5-30}{\sqrt{30}}\right) \\ & \quad=1-\mathrm{P}(Z \leq-0.273) \\ & \quad=0.607 \end{aligned} \end{aligned}$	

($\mathrm{ft}=$ follow through mark; $\left(^{*}\right.$) indicates final line is given on the paper)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

Question number	Mark scheme	Marks
4. $\begin{array}{r}\text { (a) } \\ \\ \\ \text { (b) }\end{array}$	Fixed number of independent trials 2 outcomes Probability of success constant $\begin{array}{rlr} \mathrm{P}(X=5)=\frac{2}{7} ; \mathrm{P}(X \neq 5)=\frac{5}{7} & \text { may be implied } \\ \mathrm{P}(5 \text { on sixth throw }) & =\left(\frac{5}{7}\right)^{2} \times\left(\frac{2}{7}\right) & p^{n}(1-p) \\ & =0.0531 & \end{array}$ $\begin{aligned} P(\text { exactly } 3 \text { fives in first eight throws }) & =\binom{8}{3}\left(\frac{2}{7}\right)^{3}\left(\frac{5}{7}\right)^{3} \quad \text { use of }{ }^{n} C_{r} \text { needed } \\ & =0.243 \end{aligned}$	B1 B1 B1 B1 B1; B 1 ft M1 A 1 ft A1 M1 A1 ft A1 (5) (12 marks)
(a) (b)(i) (ii) (c) (d) (e)	$\mathrm{f}(x)= \begin{cases}0.05 & 180 \leq x \leq 200 \\ 0 & \text { otherwise }\end{cases}$ $\begin{aligned} & \mathrm{P}(X \leq 183)=3 \times 0.05 \\ & =0.15 \\ & \mathrm{P}(X=183)=0 \\ & \mathrm{IQR}=10 \\ & 0.05(200-x) ;=0.05(x-180) \times 2 \\ & 200-x=2 x-360 \\ & x=186 \frac{2}{3} \end{aligned}$ $\frac{1}{3}$ of all cups of lemonade dispensed contains $186 \frac{2}{3} \mathrm{ml}$ or less $\text { (or } \frac{2}{3} \text { of all cups of lemonade dispensed contains } 186 \frac{2}{3} \mathrm{ml} \text { or more) }$	B1 B1 B1 B1 (4) M1 A1 B1 (3) B1 (1) M1; A1 A1 (3) B1 B1 ft (2) (13 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper)

Question number	Mark scheme		Marks
7. ${ }^{(a)}$	$\int_{-1}^{0} k\left(x^{2}+2 x+1\right) \mathrm{d} x=1$	limits needed and $=1$	M1
	$\left[k\left(\frac{x^{3}}{3}+x^{2}+x\right)\right]_{-1}^{0}=1$	attempt at integration	M1 A1
	$k=3 \quad(*)$		A1 (4)
	$\mathrm{E}(X)=\int_{-1}^{0} x . \mathrm{f}(x) \mathrm{d} x$		M1
	$=\int_{-1}^{0}\left(3 x^{3}+6 x^{2}+3 x\right) \mathrm{d} x$	limits needed	A1
	$=\left[\frac{3 x^{4}}{4}+2 x^{3}+\frac{3 x^{2}}{2}\right]_{-1}^{0}$	integration and substituting limits	M1
	$=-\frac{1}{4}$		A1 (4)
	$\int_{-1}^{x_{0}}\left(3 x^{3}+6 x^{2}+3 x\right) \mathrm{d} x=\left[x^{3}+3 x^{2}+3 x\right]_{-1}^{x_{0}}$		M1
	$=x_{0}+3 x_{0}^{2}+3 x_{0}+1$		A1
	$\mathrm{F}(x)= \begin{cases}0 & x<-1 \\ x^{3}+3 x^{2}+3 x+1 & -1 \leq x \leq 0 \\ 1 & x>0\end{cases}$		B1 B1 (4)
	$\mathrm{P}(-0.3<X<0.3)=\mathrm{F}(0.3)-\mathrm{F}(-0.3)$		M1
	$=1-0.343$		A1
	$=0.657$		A1 (3)
			(15 marks)

($\mathrm{ft}=$ follow through mark; $\left(^{*}\right.$) indicates final line is given on the paper)

